Skip to main content

Annealing process

Annealing (Softening)  is a heat treatment process in which steel is heated beyond the critical temperature (to 𝛾 -iron ) (or above recrystallize temperature), maintaining a suitable temperature for a suitable amount of time and then allow slow cooling (furnace cooling).

Fig.- full annealed steel knife

Purpose of annealing : 

  1. To relive the internal stresses
  2. To increase ductility ( hence toughness also increase)
  3. To reduce hardness
  4. Refinement of grain structure
  5. Improve plasticity, hence facilitate machining and cold deforming processes.
In annealing, slow cooling result in formation of spherical carbide and coarse perlite, which are very soft product.


Type of annealing :

  1. Full annealing
  2. Process annealing
  3. Spherodise annealing
  4. Diffusion annealing ( Homogenizing or Uniform annealing)

 1. FULL ANNEALING

        In full annealing, steel is heated beyond the critical temperature ( heated 50°- 70° C above upper critical temperature for hypo-eutectoid steel, heated above lower critical temperature for in case of hyper-eutectiod steel) and after definite period of time, it is slow cooled or furnace cooled.

For, hypo-eutectoid steel,     γ iron → perlite + ɑ iron 

For, hyper-eutectoid steel,    γ iron → perlite + FeვC

For,  eutectoid steel,             γ iron → perlite 

                                                                                  (Perlite = ɑ iron + FeვC mixture )

        Due to full annealing, Hardness increase and softness decrease.

2. PROCESS ANNEALING

        Process annealing basically empoyed for process product (eg. cold work product) to make them soft, so that they can be further used in process (ex. further processing of thin sheet, wire, etc.). Process annealing used for low carbon steel.

3. SPHERODISE ANNEALING

        Spherodise annealing is used for high carbon steel which are difficult to be machined. Speciment is heated just below re-crystallization temperature , hold for some time and then furnace cooled.
        By this process, carbide in steel is transformed in to a globular form ( or sphere form). Due to spherodise annealing,softness increase hence machinability increase.

4. DIFFUSOIN ANNEALING ( HOMONIZING OR UNIFORM ANNEALING)

        Heat the ingots, castings or forging billets to a temperature that is slightly lower than the solid phase line for long time, then slow cool down to eliminate the unevenness (or non-homogeneity) of chemical composition.

eg. In semiconductor, silicon are annealed so that boron, phosphorus etc can diffuse into substitution portion in crystal lattice.

        After diffusion annealing, complete / full annealing and normalizing are needed to refine grain structure.

Comments

Popular posts from this blog

Quenching process

Quenching also called Hardening, is a heat treatment process in which steel is heated up to austenite temperature (above it's critical temperature), hold for some time and then cooled in water, oil or molten salt (rapid cooling). Due to rapid cooling, it results very hard structure - martensite (hardest form of Steel). fig.- steel component quench in oil. Due to hardening process hardness of steel increases and bitterness also increases. (brittleness increases hence hardened Steel nay not directly use). Quenching is always follow by tempering process. Due to rapid cooling in hardening process metal shape shrink, internal residual stresses are setup. That's the reason why hardening is follow by tempering.

Additive Manufacturing processes

  What is Additive Manufacturing? As the name suggests, Additive Manufacturing (also known as 3D printing) is a group of manufacturing techniques , which manufacture parts by adding successive layers of material with the help of computer control systems. Various materials that can be used in additive manufacturing (AM) are plastic, metal, concrete, also human tissue. In the additive manufacturing process, Computer-Aided Design (CAD) is created and utilized to manufacture 3-Dimension (3D) objects. Various CAD-CAM software is required to Design, Analyze, and Manufacture parts. Once CAD data is produced, Slicing software slices the design in different layers (as required by different  AM processes), and then data utilized to manufacture required material parts. Different terms like “3D printing” and “rapid prototyping” are also casually used to describe Additive manufacturing, but each one is a subset of additive manufacturing. Hence in the simple sense, Additive manufacturing technology

Mathematic modeling of polymer extrusion process

  Q-3. Briefly explain the mathematical modelling of any one of the manufacturing processes. Ans:   Mathematical model of polymer extrusion process : Polymer material consists of long chain molecules. In extrusion of thermoplastic polymers, important parameters are Material flow and type of flow Heat transfer in flow Residence time Mixing of particles in flow in multiple polymers, etc. To analyse these parameters, mathematical models are useful. Using governing equations and boundary conditions (B.C), a model is created and a solution is obtained for particular B.C. Governing equations:   To model any flow and thermal transport in the manufacturing process, conservation of mass, conservation of  energy and the force momentum balance equation is used. The equations are as follow, Where, ρ is density,  t is time, T is temperature, V is the velocity vector, μ is dynamic viscosity, F is body force, p is pressure, Cp is specific heat at constant pressure, β is coefficient of volumetric ther